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Abstract

For a number of years, simulated long wavelength infrared (LWIR) signatures have
been used to determine the ability to classify military targets and decoys. Such signatures
sometimes exhibit specular behavior, a characteristic displaying a sudden increase in
radiant intensity of short duration. This specular behavior is sporadic and is as likely to
show up for targets as it is for decoys. Unfortunately, if these outliers (i.e. the spccular
occurrences) are not removed from the data, the estimated performance of discrimination
algorithms can be misleading. Statistical outlier detection provides an useful approach for
finding and removing the outliers caused by specular occurrences.

This paper considers the statistical properties of the outlier detection algorithms as
applied to simulated LWIR signatures. We consider possible statistical models for outliers in
order to determine whether or not modifications might minimize the number of outliers left
in the signature after editing and minimize the number of "good" observations deleted from
the signature. Ultimately, we are seeking the data editing algorithm which produces the
best possible discrimination performance-

1. Introduction

A small number of outliers in a data set can have a large influence on analyses done
with the data. This ii particularly true when the sample size is small and the number of
variables is relatively large, as is often the case in real world problems. In such multi-
variate situations, outliers may not be easy to detect or define (i.e., What distance measure
should be used to define an extreme observation?). Multiple outliers tend to mask each other.
making detection more difficult. When standard regression analyses are run, the presence
of an outlier may not be apparent in the residuals even though their presence has had a
large effect on the values of the regression parameters. In recent years it has been shown
that even a single outlier can affect the collinearity structure of the regression variables
(e.g. see Chatterjee and Hadi (1988) and Walker (1989)).
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In time series analysis it has been shown (see Chernick et. &i (1982) for example) that
outliers can make it appear. based on white noise tests of residuals. that a series is merely a
white noise process when in fact it is really a contaminated first order autorcgressivc
process. This points to a general problem, namely that outliers can hide the correlation
structure in a time series. This correlation structure is crucial for model idcntification.

Gnanadcsikan (1977) pointed out that Hampci's influence function (Huampcl (1974))
can bc used to estimate the effect individual outliers have on sample estimates of
parameters. Chernick noted that the influence function for parameters of intcrcst to the
users of a data base provides a way of defining which outliers arc important (i.e.,
observations with large estimated influence on parameters of interest to users arc
important outliers, while those with amall estimated influence are not). In this way the
influence function provides a "distance" measure for multi-variate outliers. This approach
was applied by Chernick to the problem of data validation for the Department of Energy data
bases in Chernick et al. (1982) and Chernick (1982a) and was continued as an approach to
data editing in Chernick and Murthy (1983).

Recently some important practical work has been done by Lefrancois (1991)
following up on the use of influence function measures in time series, first proposed in
Chernick et al. (1982). His methods are considered in this paper. Earlier work following up
on Chernick et al. (1982) are Lattin (1983) and Li and Hui (1987)

2. Detecting Specular Type Outliers in Signature Data

Infrared (IR) measurements are used by the military to help identify unknown
targets that may have been sent by the enemy. Specific features of each IR time-series help
to discriminate and classify the unknown targets automatically. Outliers in the time-series
corrupt the estimation of these features and, if the corruption is bad enough, will cause the
discrimination algorithm to reach wrong, or dangerous, conclusions. A computer outlier
detection algorithm is necessary since the signals are coming in "real-time". Even though a
human may be able to do a better job of outlier detection, he would be too slow to sort out
the large number of possible time-series soon enough to use the information.

At Nichols Research Corporation there has been a significant amount of work done
in recent years evaluating the performance of classification algorithms for the Strategic
Defense Initiative (SDI) targets using simulated long wavelength infrared (LWIR) and laser
radar (ladar) signatures. Specular behavior in the LWIR signature (a particular type of
outlier in signatures), which is characterized by sudden increase in radiant intensity of
short duration, occurs infrequently and sporadically in the simulations.

It is somewhat controversial whether or not these phenomena are artifacts of the
Optical Signatures Code (the standard code used to simulate LWIR signatures) or represent
real effects that an LWIR sensor would observe. In either case, due to their sporadic
occurrence, these outliers could not be expected to provide useful information for
discrimination and hence editing procedures for the detection and removal of specular
observations had been routinely included in discrimination studies.

When an IR sensor is based in space, looking at a target in space, there is very little
background radiation to corrupt the IR measurements from the target. Changes in IR
intensity from the target uan aid in describing the target, (see Figure 1). Many different
features of IR signatures have been proposed to help discriminate and classify targets. The
underlyi~ng physical parameters tend to be things like thermal mass and shape. There are
more proposed features than can be adequately covered in a paper on outliers. All of the
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features have the common problem that outliers will corrupt the feature estimation.
particularly if the least squares method is used. This problem is compoundcd in JR
measurements because the underlying physical model describing the time-scrics is
unknown, or is sometimes purposefully perturbed by the enemy.

S. ',hermalyy massive targe t
C

I t:rermall light targ t

Figure 1) IR time-series is a sequence of IR measurements from a target that is moving,
changing orientation and be subjected to a changing thermal load.

In a recent discriminat;on study for the Air Force Space Systems Division, we found
that some preliminary results were misleading due to the presence of some specular data in
our limited signature data base. Although an outlier removal routine had been applied to
these signatures, not all of the specular data was removed. The remaining specular data had
a significant impact on the preliminary performance results. J. Magnuson and M. Chernick
devised an outlier removal routine based on the influence function for the variance of
intensity. Unique features of the algorithm include the initial use (after detrending) of the
middle 50% of the data and the adding back of observations with small to moderate
influence. This avoids the masking problem. Empirically, the method appears to be effective
since it removes the outliers without creating many "false alarms" (i.e., identifying valid
observations as outliers). Preliminary work has been presented as a contributed paper at
the annual meeting of the Institute of Mathematical Statistics in Washington D.C in August
1989 (Chernick and Magnuson (1989)).

This paper reports on the statistical properties of outlier detection algorithms based
on the use of influence functions when specular behavior is present. We also consider one
robust time series method due to Roussecuw and Leroy (1987). Other approaches, such as
Fox's test (see Fox (1972)) seem to suffer from the masking problem and are too sensitive to
the detrending algorithm. We developed and tested these algorithms using simulated LWIR
signatures. Currently we have a reasonably large data base of signatures for a variety of
targets available. The methods used in Chernick and Magnuson (1989) are studied from the
theoretical point of view. In particular, thresholds which were adjusted based on simulation
results can be studied in the context of assumed probability models. Since observations are
added back sequentially based on their ranking of intensity after detrending, recent
developments in repeated significance testing and nonlinear renewal theory as developed
by Woodroofe, Siegmund and Lai over the past 13 years are considered (see Siegmund (1985)
and Woodroofe (1982) for details regarding this theory), Unfortunately due to the
complicated nature of our algorithm, current theory only can be applied to partial sums in
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one-parameter exponential families. It can therefore be applied to CUSUM tests but not to
our sequential influence function algorithm.

Hampel's influence function was designed for observation vectors which arc
independent and identically distributed. The signature data we considered arc correlated
over time and arc non-stationary. By removing the trends in the series we havc rcmoved
the non-stationary behavior of the series. Trend removal is important and difficult when
outliers are present. We compare various approaches. Proper trend removal is important
since all the outlier detection algorithms depend on the time series being stationary.
However the detrcnded series may still exhibit correlation and the methods applied to both
the specular data and the closely spaced object (CSO) problems have thus far not taken this
into account. In recent years Martin and his colleagues have looked carefully at the
problems of parameter estimation and outlier detection for time series data. In particular
they have defined influence functions which they believe are more appropriate for the
detection of outliers in time series (Martin and Yohai (1986)). We have investigated the
correlation structure of the dctrended series. To date it has been difficult to find ways to
make these generalizations practical. Lefrancois (1991) provides practical tests using
empiric influence functions which w.,e compare to our methods.

3. Editing Data with Closely Spaced Objects.

In strategic defense studies the surveillance sensors may not have the capability to
resolve objects as early as would be desirable. Data from unresolved objects however may
still be useful for tracking and discrimination. Depending on the sensor characteristics, the
scenario for the deployment of targets and decoys and the sensor location, objects may. at
various times, be unresolved. If signature intensities from two or more objects cannot be
separated, the sensor will combine their intensities. If such data points are included in the
signature, the track file can be so distorted as to severely degrade or destroy the
discrimination performance. One remedy is to detect the times at which the track file is
corrupted by multiple objects, to then remove these corrupted points (called CSOs for closely
spaced objects) and discriminate on the basis of the remaining points. In recent work at
Nichols Research Corporation, we have found that. for the scenarios we considered, some
discrimination capability is still possible even though the simulated track files were often
corrupted by CSOs. Our editing algorithms were based on the use of influence functions
applied in an iterative fashion. Although the problem was similar to the specular data
problem, there were some differences in the characteristics of the outliers (e.g. a much
larger percentage of contamination for the CSO problem), the performance requirements
and the necessary modifications used to get the algorithms to work properly. Again the
statistical characteristics" of the algorithms have not been studied. It would be a worthwhile
research effort to look at the statistical properties of these algorithms when applied to
signature data with closely spaced objects with an approach similar to our previous studies.
Unfortunately, we did not have time to consider this in the current study.

4. Repeated Significance Tests

Our sequential outlier test will reject an observation as an outlier or specular
occurrence if the observation, say Xi has a large influence on the variance of the detrended
data which includes the i-i observations from the middle of the detrended series and
additionally those with the smallest influence on the variance. The decision criterion is,
for fixed N (in our case N=61) to reject the first observation i as an outlier if
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(X, .Xo.I) -I > C.

where C is a given threshold. X(1.j) is the mean of che middle 50% or thc detrended
2

observations plus any additional ones which have been added back and S2(i_) is the variance

of the same i-I observations.

This is a sequential hypothesis test where the test procedure is applied for several
values of i. The threshold C can be constant or it can vary with N. if the test were to be
applied for just one value i, it is usually straightforward to pick a value for C to control the
type I and type !1 errors. However since the test is repeated for several values of i, the
choice of C is more difficult.

The theory of repeated significance testing addresses this issue of choosing a
threshold C. We hoped that the theory would be sufficiently general to be applied to our
test. Unfortunately the theory is not sufficiently general and does not appear to be easy to
extend to cover our problem. It may however still merit further study.

We briefly describe the theory of repeated significance tests and discuss the level of
generality of the existing theory. For a more thorough description, the reader should
consult Siegmund (1985) or Woodroofe (1982).

In the simplest setting we have n independent Gaussian random variables each with

mean g and variance a2 (denoted as N(g,,02)). Let XI,X 2,...,Xn represent these n random
variables. Define

Sn=' Xi.fi=

Now S./4Ji has the Gaussian distribution with mean ýff g and variance a2 (denoted N(iffig,0 2)).

Suppose that we want to test the hypothesis that t.--0 versus the alternative p # 0.

From tables for the standard normal distribution (denoted N(0.1)) we have for fixed n
and for a2 known

P[ISnl > 3oaffJ = .0026 if g=0,

since when . = 0, S,~n/_= N(0,a 2 ) or S,/(vfa) =N(0,1).

Let the threshold Ca be 3a04f. If this threshold is exceeded for fixed n by ISnI then we
have strong evidence for rejecting gt = 0.

However. suppose we just continue to take observations until we find an n such that
ISn1>3 3W11. This amounts to a sequential rule with stopping time

tg=sinfn>_C1heSnr>i3k 5
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However, from probability theory, the law of the iterated logarithm tells us that

Urn sup Sn - ng _ = I with probability 1.

n--io, af2n log-log n

So even for P = 0

S will, with probability one, be of the order f2 log log n for some n (actually for
0411

infinitely many values of n) which is certainly eventually bigger than 3. So the probability
under the null hypothesis of ever finding such a t is 1.

Repeated significance testing amounts to choosing a maximum sample size N and
rejecting the hypothesis that l± = 0 iffSn1>cYVi5 for some n < N. The probability of a false

rejection ax =P(ISnl>coafiforsomen<N). The choice of c is made to control a*. The
theory of repeated significance testing amounts to approximating a* and related quantities
for given threshold values c. The theory can be applied to one-parameter exponential

families (a more general class of distributions than just the N(g.,0 2 ) with 02 known)

With our influence function test, we have something like a repeated significance
test. Things are much more complicated since we are dealing with a functional of the middle
order statistics. However, since we add back observations and repeat testing the issue is the
same. How do we determine a threshold which controls our probability of treating a "good"
observation as a specular occurrence? Note also that the costs of the two error types are not
necessarily the same. If we throw away a "good" observation, the cost is some loss of
information regarding the feature estimates. On the other hand if we accept a "specular"
occurrence, we are distorting the signature with potentially disastrous effects.

Although the determination of the threshold appears to be intractable with existing
theory, bootstrap procedures as applied to hypothesis testing problems may provide a way to
determine appropriate thresholds based on the data at hand and weak distributional
assumptions. For a good up-to-date reference on bootstrap procedures in hypothesis testing
problems see Fisher and Hall (1990).

S. Influence Functions

Hampel defined influence functions to measure the quality of robust estimators.
Although the idea goes back to his 1968 Ph. D. dissertation, the most common reference in
the literature is Hampel (1974). Implicit in the definition is the assumption that the
observations are independent and identically distributed from a distribution F. In Hampel's
definition the influence function depends on a point in the observation space usually taken
to be a particular observation, the parameter being estimated expressed as a functional of
the distribution and the distribution F itself. The general theory as applied to robust
statistics is covered in Hampel et al. (1986).

For example, the variance T2 of a uni-variate distribution F can be expressed as a
functional of F denoted by T(F), where g. is the mean of F and
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T(F)=fI- 2 dF.

In general the influence function is defined as a type of directional derivative of the
functional in the space of distributions.

Let I(F.T(F).x) denote the influence function at the point x for the functional T(F)
with distribution F. Dcfinition:

1(F,T(F),x) =lrn T((l-E)F+ES)-T(F)

where E is a positive real number and 8x is the distribution with all its probability
concentrated at x. The distribution G = (1 - c)F + cSx is a mixture distribution which is "close"
to F for small E. This definition is quite general and applies to bivariate and multi-variate
distributions F as well as the uni-variate distribution we are considering in this discussion.

Influence functions are similar to derivatives of functions and retain many
properties from calculus, including the product rule, the quotient rule and the chain rule.

From the above definition, we shall derive the influence function for the variance.
Many other influence functions have been given in the literature. Gnanadesikan (1977)
gives the influence function for biv,'riate correlation which he attributes to Mallows in an
unpublished paper. See Chernick and Murthy (1983) for some other simple examples.

Now we consider I(FT(F),x) for

T(F) = f(y-lg. dF(y)

I(F,T(F),x) = lim T(G) - T(F) where

T(G)= (y-m)2 dG(y) and m= y dG(y)

First m J dG(y) J(I-e) y dF(y) +ex = (I-c)g + LEx
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So T(G) =f(y-(l -) _- Ex) 2 dG(y) =fY_(y-_(x-_.4)2)dG(y)

(yE) - g)2 - - - 9) + C2(x - P)2] dF(y) + -[(X-_Z)2 - 2 +,2(X p)2]

So T(G) - T(F)

e(x - g) 2 (1-2+E+2)-F-,f" (y - g)2 dF(y) + (I-E)J-' [E2(x 4)2 - 2C(x-g)(y-g)] dF(y)

Since (y - g) dF(y) = 0. we simplify to obtain

T(G) - T(F) = E(x-g) 2 (1-2Z+e 2) - e CF2 + (1-E)E2 (x-g) 2 '

Noting that 0Y2= (y - g)2 dF(y) and J dF(y) = 1

Dividing by e yields

T(G) - T(F) = (x-.) I -2e+E2 ) -a2 + E( I -e)(x-g)2

= (x-p)2(-e) - C2

Now taking the limit as E approaches 0 we have

lirn T(G) - T(F) = (x-.) 2 _2 (_)

C-40 C

This shows that the influence function for the variance depends on x but only
depends on F through g and o2. The derivation applies to any distribution F with finite
second moments.
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Simple formulas such as (1) above are useful in approximating the influence
function when the paramcters g± and v 2 are unknown. We simply replace them with ihcir

sample estimates. Hence an empirical estimate of the influence function for the variancc at

X would be

whcrc X is the sample mcan and S2 is the samplc variance.

The influence function has a very useful interrctation. Suppose that we rcplacc X
with the observation Xi and replace F by Fn, 1 the empirical distribution (i.e. the
distribution with probability I/(n-i) on each observation). For large n. Fn.I approximatcs F
and we can take E = l/(n-1) since 1/(n-1) is small. We sce then that

T(G) = T(Q-Il F..! + I 8x) = T(F.)

So

T(G) - T(Fni) . T(Fn) - T(Fn. 1)

= (n- 1)(T(F,)-T(F-..))

Now T(Fn) is the sample variance when Xi is included and T(Fn-.) is the sample variancc
when Xi is excluded. So the influence function approximates the difference between the
estimate with the observation included and with the observation excluded multiplied by the
sample size. With this interpretation we see that the influence function is a very appealing
sensitivity measure of the effc't of an observation on the estimate. Such measures are
useful in determining outliers with respect to particular parameters of interest (in this case
the variance).

Strictly speaking these results apply only to independent and identically distributed
observations, but we have found them to be useful in practice even when the observations
are correlated (e.g. Chemick et al. (1982) and Chernick and Magnuson (1989)). Martin and
Yohai (1986) have generalized Hampel's definition to time series data and Lefrancois (1991)
uses some practical and easily computable forms of influence functions which have a
similar appealing notion of sensitivity of the estimates to the observations.

The sequential influence function outlier detection algorithm simply divides by o2 to

remove any scale dependence in setting a threshold. So instead of using (Xi- - S2 a n d
comparing it to a threshold C, we use

(Xi - -f
S2

and compare it to a threshold C. In our case, the detrending algorithm is applied first and
the middle 50% of the detrended observations are used to initially estimate I• and a2. This is
done to avoid masking due to estimate sensitivity to outliers.
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A detailed description of the outlier detection algorithms used to detect the spccular

occurrences is given in the next section.

6. Algorithms Studied

In our investigation we considcred four approaches to the outlier detection problem.
Fox (1972) provided one of the earliest approaches to identifying outliers in time series. His
was a pionccrini, paper which is often cited in the literature. Fox's major contribution was
to identify !'..-o types of outliers which arc referred to as (1) additive outliers and (2)
innovation utliers. A model which considers only additive outliers is referred to 2s an AO
model and one which considers only innovation outlier.s is referred to as an 10 model. These
models have bccn adopted by Martin and others in much of the subsequent work on robust
time series modeling and outlier detection.

The distinction made between AO and 10 outliers is that the AO outlier is a unique
occurrence which has an additive effect on a single observation but does not effect
subsequent observations, whereas the 10 outlier affects a particular observation and all
subseouent observations. The specular occurrences should be modelled as AO outliers since
they have short duration and do not affect the magnitude of subsequent observations. On
occasion a specular occurrence may last for more than one time measurement interval. In
such cases it may be best to model the event as possible multiple AO outliers.

Fox's other contribution was to provide likelihood ratio tests for detecting an AO or an
10 outlier in a time series. Although this work has value, it is somewhat restrictive. First it
requires that the time series is stationary and well approximated by a low order
autoregressive process. Fox states in the introduction "Throughout this paper, trend and
seasonal components are assumed either negligible or to have been eliminated. The method
adopted to remove these components might affect the results in some way." In fact our
signatures have significant polynomial trends and periodic components which need to be
removed first. Since the presence of the outliers can have an impact on the success of the
detrending algorithm it also has an affect on the ability of Fox's algorithm to detect the
outliers. This difficulty, which is more severe for some of the algorithms, is a problem
which is faced by all algorithms.

Fox's tests are designed to have maximum power (i. e. highest probability of detecting
an outlier) when the entire series has a single outlier (either AO or 10) and the location of
the outliers is known. It also can have practical utility when the locations of the outliers
are unknown. Unfortunately, its biggest weakness is that it is not designed for dealing witL
multiple outliers. Our preliminary investigations showed that masking was a serious
problem with Fox's test. Masking occurs when the presence of multiple outliers inhibits
parameter estimation which in turn reduces the ability to differentiate outliers from "good"
data. For signatures with specular occurrences, multiple occurrences are quite common. For
this reason, Fox's test is not competitive with our sequential influence function test and
thus was dropped from the comparison.

Chernick et al. (1982) developed an influence function matrix for the autocorrelation
function of a stationary time series. The influence function for the correlation at lag k was
determined by analogy to the bivariate correlation of the components of independent
random two - dimensional vectors as given in Gnanadesikan (1977). They showed through
simulations and some real data examples the practical value of this influence function
matrix for detecting multiple outliers in the time series data. Later Martin and Yohai (1986)
devised more general influence functions which are appropriate for correlated data.
Hampel's influence function really is meant to apply only to independent identically
distributed random variables or vectors.

Magnuson & Chernick 10



Although Martin and Yohai (1986) provide a suitable general theory. it is difficult to
infer a practical influence function measure from their results. Lcfrancois (1991) has
provided practical measures of influence for time series. He provides thresholds for these
influence functions based on the assumption that the time series is stationary and Gaussian.
in referring to earlier work on influence functions for time series. Lefrancois states that
"almost all were developed without recourse to general appropriate theory, and without
critical values for declaring an observation as over - influential or not. Only Chernick et
al. (1982) mentioned a threshold, but it does not correspond to the distribution theory of
their suggested measure."

Actually Chernick et al. (1982) did derive thresholds based on the product standard
normal distribution which is appropriate when one is willing to assume the process is
Gaussian. They also derived the distribution for a summary test statistic which they called
the average squared influence function. This statistic has asymptotically a chi-square
distribution. They were, however, reluctant to apply the distribution theory to the real data
examples because they felt that the Gaussian assumptions were no! justifiable.

It is importan to note that the formulas for influence functions only require the
existence of certain moments. In the case of autocorrelations. we need second moments.
Large values of the influence function will indicate outliers even for many non-Gaussian
time series. Chernick et al. (1982) chose to use thresholds based on empirical
experimentation with the observed data. At this time bootstrap procedures could be used to
arrive at thresholds based on the observed time series, avoiding Gaussian assumptions.

We believe that the measures provided in Lefrancois (1991) are appropriate and
useful for detecting outliers in time series. The thresholds he derives are appropriate for
Gaussian processes but may not be appropriate otherwise.

Although Lefrancois states "We consider only the case of at most one over-
influential observation.", he does demonstrate its use in paragraph 4 as a method for
detecting outliers (i.e. multiple outliers) in time series. Although influential observations
need not be erroneou. or outliers, in practice they often are an6 we believe Lefrancois'
remarks are overly cautious.

We consider in this paper Lefrancois' sample influence measure which he denotes
SICi,k, Let g± and o2 denote the mean and the variance of a stationary time series Xi i=1,2.....n.
We define

Z7=(x-i)/I" Actually in practice, since gi and a2 will be unknown, sample estimates
will be used in their place in computing Zi.

Lefrancois' SICik, is the sample influence of observation i on the lag k
autocorrelation rk. From equation (2.4) in Lefrancois (1991) we approximate SICik by

SICi.k = (Z, Z,+k + Zi 7,-k- rk 7)/ (I - 4./(n-l))

This is contrasted with the Chemick et al. (1982) measure which is

Mgso 
= 

Cer 
+ 

n+ic 
rk
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Note that for large n the denominator in SICij is close to 1. Ignoring the denominator we

sec a great deal of similarities between the two equations above. -l[2(Zý+Z•.k)rk in Ci.k is
2

about the same as -Z~rk in SICi.k and the term ZiZi+k occurs in both equations. The main
difference is the term ZiZi.k in SICi~k which does not appear in Ci.k. Lefrancois points to
this missing term in Chernick et al. (1982). We believe that this point and the 'Ieave-onc-
out' interpretation of SICi.k justifies the belief that it is an improvement over Chenmick Ct

al. (1982). Lefrancois (1991) computes a summary statistic QICi which is a quadratic form
obtained from SlCik. This is similar to the average squared influence function of Chcrnick
et al. (1982). To test for a single highly influential observation, he obtains Bonfcrroni type
upper and lower bounds on the probability distribution for the largest QICi in the time
series. To detect multiple outliers this test can be applied sequentially (i.e. tcst the largest
and if it exceeds the threshold remove it and repeat the procedure on the time series with
that observation left out). The sequential procedure is continued until no outliers remain
(i.e. the largest QICi no longer exceeds the threshold). This procedure appears to have
worked well in the example of paragraph 4 in Lefrancois (1991) but masking may still be a
problem with this approach.

In section 5. we derived Hampel's influence function at x for the variance of
independent identically distributed observations from a distribution with finite second
moment. For a stationary time series we interpret this result as the effect an observation x
will have on the variance of the time series (although strictly speaking the result does not
apply to correlated observations). Since specular occurrences have a large effect on the
variance of the signature, we expect that such an influence measure would be able to detect
these occurrences. This was borne out in Chernick and Magnuson (1989) and has been used
at NRC to edit simulated signatures since that time.

As we pointed out in Section 4, repeated significance testing provides the appropriate
framework for determining a threshold for our test statistic. Since the results do not appear
tractable, empirically defined thresholds were used. A better approach using bootstrap
hypothesis tests may be the subject of further research. Our test is essentially to reject for

large values of 2 where Zi=(xi-i)/cr as before. lPowever since m and s are unknown and

estimates are sensitive to outliers, they are replaced by X(i-l)and S6i.1) as defined earlier. This
is very important since it essentially removes the masking problem by truncating the data
and then adding back observations until the outliers are found. A similar approach to
Lefrancois' statistics might also help his algorithm even though it makes the distribution
theory intractable. Both our sequential influence function for variance algorithm and
Lefrancois' influence function for autoconelation are based on the fact that least squares
estimation is sensitive to outliers. So outliers or specular occurren,,es will cause large
differences in estimates such as variance and autocorrelation. Measures which can estimate
this effect can therefore detect the specular occurrences.

Our naive intuition tells us that if we have an appropriate model for the "good" data.
then the outliers should be detected because they have a large residual (i. e. deviation of the
observed value from what the model expects). With least squares estimation, however these
outliers can have such a high influence on the model parameters that their residuals are
small! An alternative approach is to find estimation procedures which are insensitive to the
outliers (i.e. robust time series modelling) and then detect the outliers based on residuals
from the "robust" model. In recent years, motivated by results in robust regression
modeling, there have been a number of procedures devised to obtain robust estimates of the
parameters in a time series model. In order to detect multiple outliers, we seek a proccdure
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which doesn't breakdown until many outliers arc present. In robust regression the
repeated median algorithm of Siegel (1982) is an cxample of a proccdure with an asymptotic
breakdown point when 50% of the data are outliers. It achieves the maximum possible
breakdown value in the limit as the sample size gets larger and larger.

Of the available methods in the time series literature, the most prom.sing appears to
be the least median of squares algorithm of Leroy and Roussccuw. The proccdurc is to fit
robustly a low order autoregressive model to the stationary time series. Based on fitting
some detrendcd signatures without speculars, we decided to apply an autorcgrcssivc model
of the fourth order (AR(4)) to ie data. It appears that it may be bcttcr to remove the
remaining seasonal components first.

The least median of squares algorithm considers the square residuals just as does least
squares but instead of minimizing the sum of the squared residuals. it minimizes the median
of the entire set of squared residuals. The outliers can then produce large squared residuals
and have no effect on the estimate since their squared residuals arc well above the median.
The procedure is conceptually simple but difficult to compute. The basic procedure is
described by Roussecuw and Leroy (1987) pp 197-204. It is very computer intensive and
tricks are provided to reduce the computation. For time series models a slight modification is
required. This is described on page 279 of Roussecuw and Leroy (1987). An example of the
successful application of the procedure is given on pages 279-284. After fitting the model.
the observations with large absolute residual are considered to be outliers. In the case of
specular occurrences. this test could be one-sided (i.e. only observations which are much
larger than the model prediction will be considered).

7. Results of Algorithm Comparisons

7.1) Detrending algorithms

The minimum window performed the best since it takes advantage of our apriori
knowledge that outliers are always large. The median window detrending algorithm
performance was worse for our special case, but it is more general since it makes no
assumptions about the direction of the outliers. The median window detrending algorithm is
recommended for general outiler detection. The Fourier series detrending algorithm was
severely affected by outliers. Its performance was inferior.

7.2) Equal error rate as a fair scoring parameter

Since we are comparing the results of several combinations of different algorithms
we need a common scoring technique. The equal error rate was chosen as a fair and
consistent scoring method for several reasons. Figure 2 is a schematic of how the equal
error rate is calculated. The histograms on the left in Figure 2 are the distributions of good
data and outliers. The outlier distribution tends to lie to the right of the good data because
the outliers tend to have higher intensity than the good data. The threshold figure 2a is
placed in an arbitrary position for purposes of explanation. Any data lying to the left of the
threshold is designated good data and everything to the right is designated as an outlier, A
type 1 error, an outlier mistakenly designated as good data, occurs for those outliers in the
tail of the distribution which lie to the left of the threshold. A type 2 error, good data
mistakenly labeled as an outlier, occurs for the good data in the tail of the distribution
which lie to the right of the threshold. Figure 2b is calculated by moving the threshold
through a range of values. If the threshold is arbitrarily placed to the left of both
distributions, all the. data will be assumed to be outliers and 100% of the good data will be
discarded (type 2 error). As the threshold is moved to the right, less of the good data will be

Magnuson & Chernick 13



discarded but more outliers will be retained, type I errors increase while type 2 errors
decrease.

Thrmoetd

Good Ode Tt/h~

E Equd Erm 104

0 O
kAredy (watrhSeradi) .s 0 s 10 15

Thsod (S&O.)

Figure 2) Calculation of equal error rate.

The exact placement of the threshold depends on how well the two different types of
errors can be tolerated. If outliers are extremely detrimental, the threshold should bc
moved to the left as far as possible. On the other hand, if good data must be retained at 2ll
costs, then the threshold should be moved to the right as far as possible. No matter where
the threshold is fixed, there is always a compromise between the two types of errors. A fair
compromise is to place the threshold where the two types of errors are equal, thereby the
name "equal error rate". This is a traditional placement when the detrimental effects of the
different types of errors are not known in advance.

7.3) Fox's algorithm

Since Fox's algorithm is not intended for multiple outliers, its performance was
expected to be poor due to the masking problem. The results were 43% equal error for the
minimum window detrending algorithm, 46% equal error for the median window
detrending algorithm and 49% equal error for the Fourier filter detrending algorithm.

7.4) Sequential Influence Function

The performance for the Sequential Influence function was much better. The results
were 12% equal error for the minimum window detrending algorithm, 17% equal error for
the median window detrending algorithm and 30% equal error for the Fourier filter*
detrending algorithm. The main improvement was accomplished because of overcoming the
masking problem.

7.5) Sequential AR(I) Influence Function

A slight, but significant improvement resulted when a first order autoregressive
(AR) model was used. The results were a 9% equal error for the minimum window
detrending algorithm. The characteristic operating curve is plotted in Figure 3.
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Figure 3) The characteristic operating curve for the Sequential

AR(l) influence function algorithm.

7.6) Lefrancois' algorithm

Lefrancois' algorithm requires an intermediate step of calculating an influence
function SIC. An overly influential point in the time series will not only perturb the
influence function for the time point, it will also perturb the influence function of
adjacent points at different lags in what has been coined the "clothes-pin" effect. The
clothes pin shape is displayed in Table 1. The clothes-pin effect stands out when there is
only one outlier in a time series. Even with only one outlier. however there are some
coincidences where a relatively small data point, like number 54 which is not an outlier,
can serendipitously have a large sum of squares and become suspicious.

Unfortunately, when several outliers are present, the estimates of the
autocorrelation parameters are affected and the influence function are badly corrupted as
in Table 2.

The value of the influence function for point number 31 in Table 2 is relatively large. 1.42,
compared to the values for the two outliers at points number 23 and 27. There were other
outliers in this series which also corrupted the autoregressive parameter estimation.

Influence functions are also affected by large values in data which really have no
outliers. Table 3 is an example of such a series. This series has a large oscillatory,
component which may or may not be adequately modeled by the fourth order
autoregressive process AR(4).

The overall performance for data with an arbitrary number of outliers is described
in Figure 4. The equal error operating point is 31% false acceptance and false rejection.
This is considerably worse than the 9% equal error rate established by the sequential
influence function. The major difference is that in the Lefrancois algorithm, the
autoregressive parameters were calculated using all the data and then the points with the
largest influence functions were removed. The opposite approach was taken with the
sequential influence, function.
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Obs Data Lag Sum 2 /N
Num

1 2 3 4

44 0.8625 -0.08 -0.18 -0.01 -0.17 0.11

45 1.1259 -0.44 -0.73 0.27 -0.20 0.16

46 0.0000 -0.09 -0.14 1.33 0.73 0.65

47 0.4048 0.27 0.14 0.22 -1I. 0.33

48 0.9925 -0.55 -0.90 .00 0.04 0.66

49 0.1732 0.56 -2, 11 0.62 0.21 0.91

50 0.0000 -2.77 0.36 0.95 1.01 1.42

51 2.9560 -2.41 LMi.2 .6.7" -2.11 9.50

52 0.5609 -0.43 0.20 0.07 0.09 0.82

53 0.0000 0.40 -3.42 1.62 1.30 2.60

54 0.6798 -0.01 -0.01 0.03 -0.01 5.77

55 0.8580 -0.29 -0.41 -0.14 0.75 2.14

56 0.0000 0.48 0.84 1.51 1.21 0.93

57 0.3332 0.69 0.53 0.40 0.77 0.45

58 0.5865 0.20 0.30 0.01 0.19

59 0.0665 1.32 1.51 1.20

60 0.0000 1.71 1.27

61 0.3876 1.46

Table 1) Lefrancois Influence Functions for data with only one outlier at time point 51. The
"clothes-pin" effect is emphasized by the numbers which are bold and underlined SIC

values. The outlier is marked by **
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Obs Data Lag Sum 2 /NNum __ _ _ __ _ __ _ _

1 2 3 4

19 0.0302 0.32 0.30 -0.51 -0.45 0.24

20 0.0459 0.30 0.30 -0.41 -0.51 0-32

21 0.0051 0.35 -0.51 0.35 0.35 0.13

22 0.0000 -0.48 0.31 0.37 0.35 0.15

23 1.2388 * -0.90 -1.38 -0.83 2.58 1.37

24 0.0402 -0.41 0.29 -0.49 0.28 0.23

25 0.0000 0.34 -1.46 0.39 0.37 0.61

26 0.0340 -0.50 0.29 -0.42 0.30 0.20

27 1.3696 ** -0.97 -1.59 -0.89 2.57 2.52

28 0.0049 -0.56 0.31 0.36 0.34 0.24

29 0.0000 0.36 -0.62 0.37 -1.32 0.69

30 0.0428 0.31 0.30 -1.90 0.27 0.62

31 0.0291 0.32 -1.18 0.31 -1.59 1.42

32 0.0000 -1.33 0.31 -0.81 0.37 0.39

Table 2) Lefrancois Influence Functions with multiple outliers

Obs Data Lag Sum2/N
Num ___ ______

2 3 4
27 1.1609 -0.35 1.10 -0.83 3.33 8.49

28 0.4309 -0.02 0.02 -0.17 -0.14 0.24

29 0.0000 0.08 -1.26 -1.79 -1.02 1.00

30 0.5672 -0.10 0.39 0.05 0.30 0.12

31 0.5351 0.29 -0.16 0.24 0.07 1.62

32 2.1514 -0.02 3.68 -4.80 6.72 10.65

33 0.0000 -3.90 -0.01 -1.24 0.71 2.29

34 1.9764 -1.83 7.69 -0.09 0.40 11.43

35 0.1699 -1.84 0.20 -1.00 -0.12 3.85

36 1.3120 -0.08 1.36 -0.86 4.67 16.70

37 0.5404 0.07 -0.03 0.28 -0.16 0.08

38 0.0000 -0.17 -1.49 0.93 -2.54 1.57

Table 3) Lefrancois Influence Functions - data with no outliers
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Figure 4) Operating Characteristic Curve for Lefrancois

Influence Function Outlier Detection Algorithm.

8. Human Experiment

In fact humans seem to be excellent outlier detectors, out performing all the
algorithms tested so far. Relies and Rogers (1977) showed that statisticians can subjectively
estimate a location parameter in the face of outliers quite well. Similarly we demonstrate
that for time series signatures, engineers are good at identifying outliers. As an
experiment, 4 volunteers were tested as outlier detectors. They were given 30 Infra-red
measurement time-series with 61 time points in each series, Appendix A contains four of
the 30 samples. The volunteers were told that there were outliers in some, but not all of the
series and asked to circle all points that they considered to be outliers. All four people have
engineering degrees. They had varying degrees of familiarity with time series. Figure 5
shows a comparison between the best computer algorithm and the volunteers. Not
surprisingly, the engineer with the most experience with time series performed the best,
he correctly identified all but 2.6% of the outliers and erroneously mislabeled only 0.5 % of
the "good" data as outliers. The next most experienced engineer performed second best. She
missed 16.7% of the outliers but did not make any mistakes of throwing away good data.
Figure 5 is a comparison between the operating characteristic curve of the best algorithm
and the volunteers. The operating characteristic curve is derived by varying the threshold
on the outlier detection algorithm. There is a trade-off between threshold value and the
performance of the algorithm. On the one hand, if the threshold is lowered, more "good"
data will be falsely rejected and fewer outliers will be falsely accepted. On the other hand, if
the threshold is raised, less "good" data will be falsely rejected, but more outliers will bc
falsely accepted.
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Figure 5) Comparing human outlier detectors and the best computers
algorithm. There is a trade off between false acceptance of outliers and false
rejection of "good* data. The volunteers who had a high acceptance rMte v, cre

conservative in that they did not want to throw away any "good" data.

Four time-series plots are included in Appendix A. These four plots are the scored
results from the best human outlier detector, they help explain the problems associated
with outlier detection.

The first plot, figure ZX-140.DAT, shows the problem of detecting outliers when the
time series is non-stationary. The tester correctly identified all three outliers in this plot
with ease, even though one of the outliers lies on a steep slope. Computer detrending
algorithms are readily available for data with no outliers, but they are badly corrupted
when multiple outliers are present. This is a chicken and egg problem. If the data were
detrended, outlier detection would be simple, however, the outlier's presence corrupts the
detrending algorithm to the point where it is sometimes difficult to detect it.

The second plot figure ZX-141.DAT. shows the first step in the human's outlier
detection algorithm. He drew an envelope around the range of "good" data. This is somewhat
similar to whitening and detrending with a variable variance filter. The outliers are readily
identifiable outside the expected envelope.

The third plot, figure ZX-131.DAT shows the second improvement from the human
detector. Once the large outliers were removed, he established the rough period of
oscillation in the time-series and looked for patterns where the points were perturbed from
the sinusoid shape. Amazingly he only missed I outlier in the whole series.

Plot four, figure ZX-151.DAT almost tricked the best volunteer. Even though there are
no outliers in this time-series, the modulation between the sampling and the oscillations in
the IR object produced large spikes which at first look like outliers. The volunteer
reconsidered them and rightfully said that "all OK, no outliers". This shows the problem
with outlier detection, a variable adaptive detrending algorithm would be fooled by the last
signature.
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9. Conclusions

In conclusion, the Sequential AR(I) Influence Function preformed better than any
other computer algorithm on the data tested in this study. see table 4.. The algorithm works
well, in part, because the sequential nature of the algorithm avoids the masking problem
that happens when several outliers are present in the data.

Fox's Algorithm 43.0%

Lefrancois Influence Function 31.0%

Sequential Influence Function 12.0%

Sequential AR(M) Influence Function 9.0%

Human volunteers 2.6%

Table 4) Summary of equal error, which is a
measure of the ability of each algorithm to

discriminate outliers from good data.

Due to massive data processing requirements and the need for real time outlicr
detection, it would be impractical to use humans as outlier detectors, even though they
easily outperf,-, 1il the computer algorithms. The human volunteer test was informative
for several reasons. It shows how well a computer algorithm could be expected to perform if
it could capture the expertise of a human. The study also helps illustrate two major problems
with IR signatures..

1) Humans can handle changes of slope where detrending algorithms have
difficulty. Many good detrending algorithms are available for data without corruption by
outliers. None that we know of work well when there are several outliers present. This is a
problem that should be looked into in more detail.

2) Several outliers mask each other so estimating influence function parameters can
be badly corrupted by the outliers. A better approach is to establish robust estimates of the
parameters and then test for influence.

Because the enemy has control of the IR signature, the underlying model of the
target IR time series should be established independent of outliers. There is great hope for
overcoming most of these problems and establishing an outlier detection algorithm which
is nearly as good as the human expert once a good outlier resistant detrending algorithm is
developed.
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Appendix A Pour sample IR sipaturcs used to test human sbtliiy to dctcct outliers.
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